Пластины теплообменника КС 250 Стерлитамак

Пластины теплообменника КС 250 Стерлитамак Кожухотрубный испаритель Alfa Laval FEV-HP 1610 Елец Пластина S применяется для разделения жидкостных потоков. Е8-S Высокое качество без переплат за бренд! Заявка на скидку Ваше имя.

При активном методе теплового контроля, объект нагревается различными внешними источниками. Аттестация проводится в соответствии с правилами Госгортехнадзора по аттестации персонала в области неразрушающего контроля ПБ Прибор управляется через пульт, имеющий несколько временных интервалов и ключ безопасности для защиты от несанкционированного доступа. Контрастность радиографической плёнки характеризуется изменением плотности почернения при воздействии на нее различных экспозиционных доз излучения. Бетонная прочность Стелритамак по соотношению размеров отпечатков. Серия переносных рентгеновских аппаратов РПД представлена моделями:

Электрический подогреватель Alfa Laval Aalborg EH 30 Рубцовск Пластины теплообменника КС 250 Стерлитамак

Пластины теплообменника КС 250 Стерлитамак пластины для теплообменника funke

У воздухонагревателей ВНВ теплоотдающий элемент выполнен из стальной трубы 0 22x2 мм и алюминиевого накатного оребрения мм, шаг между ребрами 3,4 мм. Это дает ряд преимуществ по сравнению с обычными калориферами:. Данные воздухонагреватели по своему назначению, применяемым материалам, режимам работы и условиям подключения соответствуют калорифером КСк и воздухонагревателям КП-Ск.

Предназначены для эксплуатации в условиях тропического климата категории размещения 3 по ГОСТ Воздухонагреватель изготавливается из углеродистой стали обыкновеннее качества. Теплоотдающий элемент выполнен из стальной трубы 0 22x2,0 мм и алюминиевого накатного оребрения 0 41 мм. Имеется возможность изготовить воздухонагреватели других типоразмеров.

Калориферы устанавливаются в положении с горизонтальным расположением труб. Теплоотдающий элемент выполнен из бесшовной стальной трубы 0 16x2,5 мм и алюминиевого накатного оребрения 0 37мм. Промежуточные стойки и гребенки служат для поддержания теплоотдающих элементов от провисания и соприкосновения друг с другом. СО, СО менее подвержена загрязнениям за счет конструктивного исполнения теплоотдающего элемента.

Калорифер в сборе 1 шт. Воздухонагреватель в сборе 1 шт. Способы доставки Срочная курьерская доставка дня Курьерская доставка 7 дней Самовывоз из московского офиса Почта РФ. Заменен на КПО Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку: Сканы страниц документа Текст документа. ТУ , код по РКП 48 Гамма-радиометр РКГ-АТ относится к стационарным средствам измерения спектрометрического типа и предназначен для определения объемной и удельной активности гамма-излучающих радионуклидов I, Cs, Cs, 40 K, Ra, Th в воде, продуктах питания, кормах, почве, строительных материалах, промышленном сырье и других объектах окружающей среды.

Прибор может быть рекомендован для специалистов атомной, металлургической, нефтедобывающей и пищевой промышленности, ядерной медицины, а также при организации радиационно-защитных мероприятий и радиационного контроля. Гамма-бета спектрометр МКС-АТ представляет собой комбинированное спектрометрическое и радиометрическое средство измерения гамма-бета излучения и может быть рекомендован для оснащения лабораторий радиационного контроля в целях осуществления комплексного радиоэкологического мониторинга объектов окружающей среды и контроля качества продукции.

Прибор позволяет одновременно и селективно проводить:. Дозиметр-радиометр МКС-АТМ является уникальным, многофункциональным прибором, предназначенным для решения широкого круга задач радиационного контроля и защиты. Прибор относится к носимым средствам измерения и может быть рекомендован сотрудникам атомной отрасли, экологических, таможенных и аварийно-спасательных служб, а также для использования в научных исследованиях.

Дозиметр-радиометр МКС-АТ представляет собой портативныйвысокочувствительный прибор с широкими функциональными возможностями. Прибор предназначен для измерения амбиентной дозыи мощности амбиентной дозы гамма-излучения, определения удельной активности радионуклида Cs в объектах окружающей среды, а также оперативного поиска источников ионизирующих излучений и радиоактивных материалов.

Кроме того, в состав дозиметра может быть включен внешний блок детектирования БДПС, выполненный на газоразрядном счетчике с тонким окном, что позволит измерять плотность потока альфа и бета-частиц с загрязненных поверхностей. Также применение блока БДПС обеспечивает расширение нижней границы энергетического диапазона измерения мощности дозы гамма-излучения с 0,05 МэВ до 0,02 МэВ.

Спектрометр МКС-АТ представляет собой портативный и многофункциональный прибор, предназначенный для идентификации гамма-излучающих радионуклидов природного, медицинского и техногенного происхождения. Дополнительно, в приборе реализованы функции измерения мощности амбиентного эквивалента дозы гамма-излучения, плотности потока альфа и бета-частиц с загрязненной поверхности, а также режим поиска и обнаружения радиоактивных источников.

Спектрометр МКС-АТ может использоваться не только в лабораторных и полевых условиях, но также осуществлять обнаружение и идентификацию радиоактивных веществ в подводных объектах, благодаря применению герметичного контейнера. Прибор может быть рекомендован для контроля радиационной обстановки, мониторинга окружающей среды, геологоразведки, а также для применения в атомной промышленности, науке и медицине.

Спектрометр МКС-АТДР представляет собой портативный и многофункциональный прибор, предназначенный для решения широкого круга задач, таких как радиоэкологический мониторинг окружающей среды, радиационный контроль строительных материалов и изделий на содержание естественных радионуклидов, геологоразведка и радиационное картографирование.

Прибор может использоваться в лабораторных и полевых условиях, а модель МКС-АТДР в погружном герметичном исполнении позволяет осуществлять обнаружение и идентификацию радиоактивных веществ в жидких радиоактивных отходах, воде. Спектрометр МКС-АТС представляет собой современное и эффективное средство радиационного мониторинга окружающей среды, которое может быть рекомендовано к применению сотрудникам МЧС, служб безопасности, служб таможенного и пограничного контроля.

Прибор предназначен для обнаружения источников радиоактивного излучения и является эффективным техническим средством предупреждения радиологических террористических угроз или других действий, таких как незаконное хранение, использование, передача и транспортировка радиоактивных веществ и материалов.

Спектрометр МКС-АТ является многофункциональным портативным прибором радиационного контроля с основной функцией обнаружения и идентификации радионуклидов природных, медицинских, промышленных, ядерных без использования ПК. Прибор относится к персональным носимым датчикам и конструктивно выполнен в виде моноблока, содержащего детекторы гамма и нейтронного излучений, а также поставляемых по заказу потребителя внешних блоков детектирования: Дозиметр-радиометр МКС-АТ представляет собой малогабаритный прибор, предназначенный для измерения мощности амбиентного эквивалента дозы и амбиентного эквивалента дозы рентгеновского и гамма-излучения, а также для измерения плотности потока бета-частиц с загрязненных поверхностей.

Кроме того, в приборе реализован режим измерения скорости счета импульсов рентгеновского и гамма-излучения, и режим поиска радиоактивных источников. Конструктивно дозиметр выполнен в моноблочном исполнении и заключен в ударопрочный алюминиевый корпус, защищающий прибор от влаги, пыли и других загрязнений.

Прибор может быть рекомендован для сотрудников медицинских учреждений, аварийных, пожарных, таможенных и пограничных служб, а также для применения в тех отраслях промышленности, где существует необходимость контроля радиационной чистоты. Дозиметр индивидуальный ДКГ-АТ относится к компактным персональным дозиметрам и предназначен для специалистов атомной промышленности, медицины, аварийно-спасательных служб, а также для проведения радиационно-защитных мероприятий и дозового мониторинга населения.

Дозиметр ДКГ-АТ обеспечивает измерение индивидуального эквивалента дозы и мощности индивидуального эквивалента дозы рентгеновского и гамма-излучений. Прибор может использоваться автономно или совместно с устройство считывания в составе автоматизированной системы дозиметрического контроля. Устройство считывания осуществляет обмен информацией с дозиметром по инфракрасному каналу, преобразуя оптические сигналы в стандартные электрические сигналы интерфейса ПК.

При этом пользователю становятся доступны следующие функции:. Дозиметр индивидуальный ДКС-АТ относится к миниатюрным персональным датчикам и предназначен для специалистов атомной промышленности, медицины, радиологических и изотопных лабораторий, а также для проведения радиационно-защитных мероприятий и дозового мониторинга населения.

Прибор обеспечивает измерение индивидуального эквивалента дозы Нр 10 и мощности индивидуального эквивалента дозы рентгеновского и гамма-излучений. Дозиметр ДКС-АТ выпускается в четырех модификациях, отличающихся назначением и техническими характеристиками:. Спектрометр МКГ-АТ представляет собой многофункциональный прибор, предназначенный для быстрого обнаружения радиоактивных материалов и источников с функцией идентификации радионуклидов различного происхождения: Спектрометр относится к персональным носимым датчикам и конструктивно выполнен в виде моноблока, содержащего детекторы ионизирующих излучений.

Прибор рекомендуется специалистам, осуществляющим радиационный контроль в атомной промышленности, нефтегазовом комплексе и других отраслях, сотрудникам таможенного и пограничного контроля, служб безопасности, медицины, а также специалистам, работающим с радиоизотопными источниками. Дозиметр-радиометр МКС-РМ может быть рекомендован для сотрудников банковских учреждений, радиологических и изотопных лабораторий, аварийных и таможенных служб, а также для применения в тех отраслях промышленности, где используются ядерно-технические установки и источники ионизирующих излучений.

Также прибор используется для сигнализации о превышении установленных уровней ЭД и МЭД, отображения, систематизации и анализа информации о накопленной дозе. Дозиметр может применяться автономно или в составе систем дозиметрического контроля в таможенных, пограничных службах, лабораториях, а также на атомных установках. Дозиметры гамма-излучения ДКГ-РМ предназначены для автоматического контроля радиационной обстановки и непрерывного измерения амбиентной эквивалентной дозы ЭД и мощности амбиентной эквивалентной дозы МЭД гамма-излучения.

Также приборы используются для сигнализации о превышении установленных уровней ЭД и МЭД, отображения, систематизации и анализа информации о накопленной дозе. Дозиметры могут применяться автономно или в составе систем дозиметрического контроля в таможенных, пограничных службах, лабораториях, а также на атомных установках. Дозиметр гамма-излучения ДКГ-РМ специально разработан для использования в неблагоприятных условиях эксплуатации, таких как ограниченная видимость, повышенный шум, высокие температуры и механические воздействия.

Прибор может быть рекомендован для сотрудников радиологических лабораторий, аварийно-спасательных служб, а также для применения в тех отраслях промышленности, где используются ядерно-технические установки и источники ионизирующих излучений. Дозиметр индивидуальный рентгеновского и гамма-излучения ДКГ-РМ представляет собой миниатюрный профессиональный датчик и предназначен для измерения индивидуального эквивалента дозы ЭД и мощности индивидуального эквивалента дозы МЭД непрерывного и импульсного гамма-излучения.

Благодаря специальному детектору и фильтру, дозиметры серии ДКГ-РМ обладают высокой чувствительностью и к рентгеновскому излучению. Дозиметр индивидуальный рентгеновского и гамма-излучения ДКГ-РМВ представляет собой миниатюрный профессиональный датчик и предназначен для измерения индивидуального эквивалента дозы ЭД и мощности индивидуального эквивалента дозы МЭД непрерывного и импульсного гамма-излучения.

Благодаря специальному детектору и фильтру, дозиметры серии ДКГ-РМВ обладают высокой чувствительностью и к рентгеновскому излучению. Дозиметр индивидуальный рентгеновского и гамма-излучения ДКГ-РМ является незаменимым решением для обеспечения радиационной безопасности персонала и предназначен для измерения индивидуального эквивалента дозы ЭД и мощности индивидуального эквивалента дозы МЭД рентгеновского и гамма-излучений.

Прибор может быть рекомендован для сотрудников радиологических и изотопных лабораторий, медицинских и аварийно-спасательных служб, а также для применения в тех отраслях промышленности, где используются ядерно-технические установки и источники ионизирующих излучений.

Дозиметр ДКГ-РМ может использоваться автономно или в составе автоматизированной системы контроля и учета дозовых нагрузок на персонал на основе программного обеспечения Personal Dose Tracker. Детектор чувствителен к жесткому рентгеновскому излучению. В положительные имеет отзывы отечественных специалистов.

В и имеет положительные отзывы отечественных специалистов. Дозиметр рентгеновского излучения ДРК-1 - портативный российский прибор для оценки эффективной дозы облучения пациента при проведении клинический исследований с использованием медицинских рентгеновских аппаратов всех типов кроме дентальных, маммографических и томографических.

Прибор так же используется для проверки стабильности работы медицинских рентгеновских аппаратов, путем контроля повторяемости дозы при однотипных измерениях с течением времени. Модель имеет регистрационное удостоверение на медицинское изделие и рекомендована Минздравом РФ для контроля эффективных доз облучения пациентов при рентгенологических исследованиях по методике МУК 2.

Срок гарантии и межповерочный интервал 12 месяцев. Дозиметр микропроцессорный ДКГ-РМ представляет собой простой и надежный прибор для непрерывного измерения амбиентной эквивалентной дозы ЭД и мощности амбиентной эквивалентной дозы МЭД гамма-излучения. Также в приборе доступны функции измерения времени накопления ЭД, записи в память и передачи в ПК истории измерений, индикации текущей даты и времени на ЖКИ-дисплее.

Дозиметр ДКГ-РМ обладает высокой чувствительностью, что позволяет фиксировать даже незначительные изменения естественного радиационного фона. Ультразвуковые дефектоскопы можно купить с доставкой до двери или до терминалов транспортной компании в следующих городах: Нормативная классификация видов и методов неразрушающего контроля содержится в ГОСТ Ниже приводится краткий реферат с описанием основных методов НК, применяемого оборудования и общей информацией по аттестации лабораторий и специалистов в области неразрушающего контроля.

Проверить свои знания по методам НК можно пройдя онлайн-тест. Визуальный и измерительный контроль ВИК относиться к числу наиболее дешевых, быстрых и в тоже время информативных методов неразрушающего контроля. Данный метод является базовыми и предшествует всем остальным методам дефектоскопии. Внешним осмотром ВИК проверяют качество подготовки и сборки заготовок под сварку, качество выполнения швов в процессе сварки, а также качество основного металла.

Цель визуального контроля — выявление вмятин, заусенцев, ржавчины, прожогов, наплывов, и прочих видимых дефектов. Визуальный и измерительный контроль может проводиться с применением простейших измерительных средств, в том числе невооруженным глазом или с помощью визуально-оптических приборов до 20ти кратного увеличения, таких как лупы, эндоскопы и зеркала.

Несмотря на техническую простоту, основательный подход к проведению визуального контроля, предусматривает разработку технологической карты - документа, в котором излагаются наиболее рациональные способы и последовательность выполнения работ. Проведение измерительного контроля регламентируется инструкцией по визуальному и измерительному контролю - РД скачать. В инструкции содержатся требования к квалификации персонала, средствам и процессу контроля, а также к способам оценки и регистрации его результатов.

Основной набор средств визуального контроля входит в состав набора ВИК , в стандартную комплектацию набора входят: Допускается применение других средств контроля при наличии соответствующих инструкций и методик их применения. Современные средства визуально-измерительного контроля дают возможность выявления мелких дефектов, обнаружение которых, ранее было ограничено недостаточной мощностью используемых оптических средств.

Так, например портативный фотоаппарат-микроскоп X-loupe дает возможность фотосъемки дефектов от 5мкр до 12 мм, с последующей возможностью их измерения и составления информативных фотоотчетов. Контроль визуальный и измерительный при оценке состояния материала и сварных соединений в процессе эксплуатации технических устройств и сооружений выполняют в соответствии с требованиями руководящих документов методических указаний по оценке экспертизе конкретных технических устройств и сооружений.

К проведению визуально-измерительного контроля допускаются только квалифицированные специалисты, аттестованные в соответствии с правилами аттестации персонала в области неразрушающего контроля — ПБ Согласно ПБ квалификация 1 уровня не дает права подписи заключений о результатах контроля, такую возможность имеют специалисты II уровня квалификации и выше.

Аттестацию специалистов неразрушающего контрол ю, проводят независимые органы по аттестации персонала в сфере НК. При подготовке и аттестации специалистов могут быть дополнительно использованы следующие учебные материалы:. Ультразвуковой метод контроля был предложен советским физиком С.

Соколовым в году и в настоящее время является одним из основных методов неразрушающего контроля. Методы ультразвуковой дефектоскопии позволяют производить контроль сварных соединений, сосудов и аппаратов высокого давления, трубопроводов, поковок, листового проката и другой продукции. Ультразвуковой контроль является обязательной процедурой при изготовлении и эксплуатации многих ответственных изделий, таких как части авиационных двигателей, трубопроводы атомных реакторов или железнодорожные рельсы.

По сравнению с другими методами неразрушающего контроля ультразвуковой метод обладает важными преимуществами:. К недостаткам ультразвукового метода контроля можно отнести невозможность оценки реального размера и характера дефекта, трудности при контроле металлов с крупнозернистой структурой из-за большого рассеяния и сильного затухания ультразвука, а также повышенные требования к состоянию поверхности контроля шероховатости и волнистости.

Многообразие задач, возникающих при необходимости проведения неразрушающего контроля различных изделий, привело к разработке и использованию ряда различных акустических методов контроля. Согласно ГОСТ акустические методы контроля делятся на 2 большие группы: Наиболее широкое распространение в практике ультразвуковой дефектоскопии нашли методы прохождения и отражения импульсные методы , реже применяют другие методы: Среди многочисленных методов прохождения и отражения на сегодняшний день наибольшее применение в дефектоскопии нашли: Эхо-метод, в отличии от других, применим при одностороннем доступе к исследуемому объекту, и при этом позволяет определить размеры дефекта, его координаты и характер.

В общем случае, суть перечисленных методов заключается в излучении в изделие и последующем принятии отраженных ультразвуковых колебаний с помощью специального оборудования - ультразвукового дефектоскопа и пьезоэлектрического преобразователя ПЭП и дальнейшем анализе полученных данных с целью определения наличия дефектов, а также их эквивалентного размера, формы, вида, глубины залегания и пр.

Чувствительность ультразвукового контроля определяется минимальными размерами выявляемых дефектов или эталонных отражателей, выполненных в контрольном образце предприятия СОП. В качестве эталонных отражателей обычно используют плоскодонные сверления, ориентированные перпендикулярно направлению прозвучивания, а также боковые сверления или зарубки.

Самой массовой областью применения ультразвуковой дефектоскопии являются сварные соединения. Также в нём подробно описаны калибровочные стандартные образцы СО-2, СО-3 и СО-3Р, V-1, V-2 и контрольные стандартные образцы предприятия СОП , необходимые для настройки дефектоскопа, а также параметры для их изготовления. В зависимости от области использования, различают ультразвуковые дефектоскопы общего и специального назначения.

Дефектоскопы общего назначения могут использоваться для контроля самой разнообразной продукции, а специализированные дефектоскопы созданы для решения узкоцелевых задач. К наиболее популярным моделям ультразвуковых дефектоскопов общего назначения относятся:. Как правило, ультразвуковой метод толщинометрии применяют в случаях недоступности или труднодоступности объекта для измерения его толщины механическим измерительным инструментом.

Ультразвуковая толщинометрия - неотъемлемая процедура при определении толщины стенок труб, котлов, сосудов, то есть объектов замкнутого типа или с односторонним доступом, а также объектов судостроительного и судоремонтного производства. По физическим принципам, используемым для измерения толщины, акустические толщиномеры делят на резонансные и эхо-импульсные.

Резонансным методом измеряют толщину стенок металлических и некоторых неметаллических изделий керамика, стекло, фарфор. Кроме того, при помощи резонансной дефектоскопии можно выявлять зоны коррозионного поражения, зоны непроклея и непропоя листовых соединений, зоны расслоения в биметаллах, тонких листах.

Резонансные методы вынужденных колебаний в настоящее время не имеют широкого применения, так как задачи дефектоскопии и толщинометрии более точно решают импульсные ультразвуковые методы. Принцип ультразвуковой импульсной толщинометрии основан на измерении времени прохождения ультразвукового импульса в изделии или в слое и умножении измеренного времени на коэффициент, учитывающий скорость звука в материале изделия.

Основные нормативные документы по проведению ультразвуковой толщинометрии:. Импедансный метод разработан советским ученым Ю. Ланге в году. Он основан на использовании зависимости полного механического сопротивления импеданса контролируемого изделия от качества соединения отдельных его элементов между собой. Этим методом можно выявлять дефекты в клеевых, паяных и других соединениях, между тонкой обшивкой и элементами жёсткости или заполнителями в многослойных конструкциях.

Импедансные дефектоскопы широко используются в авиастроении, автомобильной и космической промышленности. Они способны обнаружить непроклеенные участки, расслоения, нарушения целостности и пустоты в различном оборудовании, приборах, конструкциях. Кроме того, метод ультразвукового контактного импеданса широко применяется для измерения твёрдости изделий из металлов и сплавов, таких как сосуды давления различного назначения реакторы, парогенераторы, коллекторы, котельные барабаны роторы турбин и генераторов, трубопроводы, детали различных транспортных средств, промышленные полуфабрикаты отливки, поковки, листы и т.

Метод контактного импеданса основан на измерении режима колебаний преобразователя, соприкасающегося с объектом. По амплитудам и резонансным частотам такого преобразователя часто имеющего вид стержня судят о твердости материала изделия, податливости упругому импедансу его поверхности. Следующим важнейшим инструментом для проведения ультразвукового контроля являются пьезоэлектрические преобразователи ПЭП , которые выступают в качестве излучателя и приемника ультразвукового импульса, обрабатываемого дефектоскопом или толщиномером.

Принцип действия пьезоэлектрических преобразователей основан на использовании прямого или обратного пьезоэлектрических эффектов. Прямой пьезоэффект представляет собой способность некоторых материалов образовывать электрические заряды на поверхности при приложении механической нагрузки, обратный пьезоэффект заключается в изменении механического напряжения или геометрических размеров образца материала под воздействием электрического поля.

В качестве пьезоэлектрических материалов обычно используют естественный материал кварц, турмалин, а также искусственно поляризованную керамику на основе титаната бария ВаТiO3 , титаната свинца PbTiO3 и цирконата свинца PbZrO3. Подробнее о ультразвуковых преобразователях, их классификации, маркировке и применении можно посмотреть здесь. Для обеспечения хорошего контакта между ультразвуковым преобразователем и контролируемой поверхностью, а также для предотвращения образования воздушного зазора, создающего помехи звуковому импульсу, необходимо использовать различные контактные жидкости или гели.

Контактная жидкость должна иметь специальный химический состав, соответствующий диапазону температур той или иной контролируемой поверхности и ее структуре. Также стоит отметить, что в некоторых случаях в частности, при контроле оборудования, используемого в ядерной промышленности требуются контактные среды с ограниченным галогенным и серным составом.

Подробнее о контактных жидкостях для ультразвукового контроля можно посмотреть здесь. Важнейшим фактором для качественного ультразвукового контроля изделий, материалов и сварных соединений является обеспечение достоверности и единообразия при проведении контроля, особенно при диагностике объектов повышенной опасности. Метрологическое обеспечение оборудования подразумевает обязательную проверку работоспособности аппаратуры перед проведением ультразвукового контроля с использованием специальных образцов.

Существует два вида образцов: Комплект калибровочных образцов необходим для проверки основных параметров аппаратуры разрешающей способности, мертвой зоны, угла ввода, стрелы ПЭП , а по контрольным образцам предприятия СОП осуществляют настройку глубиномера дефектоскопа и определение уровней чувствительности для проведения контроля конкретного изделия по определенному НД.

К используемым калибровочным образцам относятся:. Контрольные образцы предприятия СОП предназначены для настройки глубиномера и чувствительности при проведении ультразвукового контроля конкретного изделия. Наиболее распространенными типами применяемых отражателей при контроле сварных соединений являются: Подробнее о назначении, типах и области применения контрольных образцов можно посмотреть здесь.

Помимо технических требований, предъявляемых к процессу ультразвукового контроля, существует и установленный порядок организации работ. Так лаборатории, выполняющие ультразвуковой контроль должны быть аттестованы в соответствии с. По результатам аттестации лаборатории выдаётся свидетельство об аттестации в соответствующей области.

Подробнее о порядке проведения аттестации, перечне необходимых документов и оборудования можно посмотреть здесь. В зависимости от сферы деятельности, специалисты, проводящие ультразвуковой контроль должны быть аттестованы в соответствии с:. Аттестацию специалистов в целях подтверждения их уровня теоретической и практической подготовки, необходимого для выполнения работ по конкретному методу контроля проводят независимые органы по аттестации персонала в сфере неразрушающего контроля НОАП.

При подготовке к аттестации специалистами могут быть использованы следующие учебные материалы:. Подробнее о порядке проведения аттестации персонала, перечне необходимых документов и стоимости аттестации можно посмотреть здесь. Кроме того, в соответствии с требованиями ПНАЭ Г и ПБ для проведения ультразвукового контроля конкретного объекта должны быть разработаны технологические карты , содержащие перечень используемого оборудования, последовательность, параметры и схемы проведения контроля, оценку качества объекта с указанием информативных признаков выявляемых дефектов.

Для объектов атомной энергетики технологические карты должны быть согласованы в Головных материаловедческих организациях ГМО. Подробнее о разработке и согласовании технологических карт, а также примеры технологических карт на различные методы неразрушающего контроля можно посмотреть здесь. Радиографический контроль РК основан на зависимости интенсивности рентгеновского гамма излучения, прошедшего через облучаемое изделие, от материала поглотителя и его толщины.

Если контролируемый объект имеет дефекты, то излучение поглощается неравномерно и, регистрируя его распределение на выходе, можно судить о внутреннем строении объекта контроля. Радиографический контроль применяют для выявления в сварных соединениях трещин, непроваров, пор, инородных включений вольфрамовых, шлаковых , а также для выявления недоступных для внешнего осмотра подрезов, выпуклости и вогнутости корня шва, превышения проплава.

Минимальный размер дефекта, который может быть обнаружен радиографическим методом, зависит от его формы и местонахождения. Лучше всего выявляются дефекты, имеющие протяженность вдоль пучка проникающего излучения. Изображение на снимке границ таких дефектов получается более резким, чем дефектов, имеющих криволинейную форму. Если дефект расположен под углом к направлению просвечивания, то чувствительность радиационного метода ухудшается и зависит от величины раскрытия дефекта и угла между направлением просвечивания и направлением дефекта.

Допустимые размеры дефектов в контролируемых объектах указывают в чертежах, технических условиях, правилах контроля или другой нормативно-технической документации. Источники излучения рентгеновские аппараты выбирают в зависимости от толщины контролируемого металла и необходимой чувствительности, определяемой в ТУ на контроль конкретного изделия.

Для получения четкой проекции дефекта источник излучения должен иметь малый размер фокусного пятна и находиться на достаточном расстоянии от контролируемого изделия. Чувствительность РК в значительной степени определяется контрастностью снимка и резкостью изображения.

Контрастность снимка определяется как разность между значениями оптической плотности двух соседних участков снимка. Контрастность изображения определяется двумя факторами: Контрастность радиографической плёнки характеризуется изменением плотности почернения при воздействии на нее различных экспозиционных доз излучения. Резкость изображения на снимке характеризуется скачкообразным переходом от одной плотности почернения к другой на краю изображения.

Чем уже переход от светлых участков к темным, тем больше различаемость контуров, тем больше резкость. Резкий снимок определяется хорошо выявленными очертаниями контуром просвечиваемого объекта и дефектов в материале, что обеспечивает высокую выявляемость этих дефектов. Чем шире переход от светлых участков к темным, тем больше размытость контуров и тем меньше резкость изображения, следовательно, хуже выявляемость дефектов.

Разрешающая способность радиографической плёнки определяет возможность раздельно регистрировать близко расположенные дефектные и бездефектные участки контролируемого изделия и характеризуется количеством раздельно различимых штриховых линий одинаковой толщины на длине 1 мм. Мелкозернистые плёнки имеют более высокую разрешающую способность по сравнению с крупнозернистыми плёнками.

На практике чувствительность радиографического контроля характеризуется минимальным лучевым в направлении просвечивания размером выявленного эталонного дефекта проволочки, канавки, отверстия и выражается в абсолютных или относительных единицах. Чувствительность зависит от радиографической контрастности контролируемого объекта и от коэффициента контрастности детектора излучения.

Влияние геометрии просвечивания на качество снимка. Схемы радиографического контроля следует выбирать с учетом наилучшего выявления на радиографическом снимке возможных дефектов. Основные схемы контроля сварных соединений радиографическим методом приведены в ГОСТ Проведенный анализ показывает, что выявляемость дефектов при радиографическом контроле зависит от многих причин.

В следующей таблице содержится информация о комплексе факторов, влияющих на чувствительность радиационного контроля. Основными типами регистраторов рентгеновского излучения в НК являются рентгеновская пленка и набирающие популярность фосфорные пластины используемые в компьютерной радиографии.

Существуют и другие детекторы рентгеновского излучения, их подробная классификация представлена в статье. На сегодняшний день, в России, радиографический контроль чаще всего проводят с использованием пленки. В настоящее время в РA нет стандартов по классификации и методам испытаний радиографических пленок. Выбор конкретного типа пленки, зависит от толщины и плотности материала ОК, а также по требуемой производительности и чувствительности.

Рекомендуемые типы плёнок обычно приводятся в руководящих документах , методических инструкциях и технологических картах на объекты контроля. Крупнозернистые низкоконтрастные плёнки в основном применяются для контроля толстостенных изделий, в которых, как правило, предельно допустимые дефекты имеют большие размеры. Время нормальной экспозиции при использовании крупнозернистых плёнок существенно меньше, чем при использовании мелкозернистых высококонтрастных плёнок используемых для выявления мелких дефектов в деталях из легких сплавов и стали небольшой толщины.

Высококонтрастные пленки требуют больших экспозиций, что существенно снижает производительность контроля. Время экспозиции при работе с такими плёнками можно сократить, используя свинцовые и флуоресцирующие экраны. Коэффициент усиления свинцовых экранов находится в пределах 1,,0, флуоресцирующих — Под коэффициентом усиления экранов понимается величина, показывающая, во сколько раз уменьшается экспозиция просвечивания при использовании данного экрана.

В настоящее время так же применяют флуорометаллические усиливающие экраны, выполненные в виде свинцовой подложки с нанесенным на нее слоем люминофора. Эти экраны имеют больший коэффициент усиления, чем металлические, и обеспечивают лучшую чувствительность, чем флуоресцирующие экраны. В практике радиографии часто применяют комбинацию из усиливающих экранов в виде заднего и переднего экранов , между которыми размещают радиографическую плёнку.

Применение заднего металлического экрана вместе с увеличением коэффициента усиления уменьшает влияние рассеянного излучения. Толщину металлических экранов, а также материал люминофора выбирают с учетом энергии рентгеновских или гамма лучей. Из-за снижения разрешающей способности радиографических снимков, получаемых с использованием флуоресцирующих экранов, применение последних не разрешается при РГК высокоответственных сварных швов, например, в атомной энергетике.

Альтернативой радиографическому контролю с использованием рентгеновской пленки является компьютерная радиография с использованием запоминающих пластин, основанная на способности некоторых люминофоров накапливать скрытое изображение, формирующееся под воздействием рентгеновского или гамма излучения. После экспонирования специальный сканер считывает пластину лазерным пучком.

Процесс считывания сопровождается эмиссией видимого света, этот свет собирается фотоприемником и конвертируется в цифровое изображение. Статью посвященную сопоставлению выявляемости дефектов с использованием пленки и системы компьютерной радиографии можно найти здесь. Смотрите так же статью Компьютерная радиография — оборудование и стандарты. РК может проводиться промышленными рентгеновскими аппаратами или гамма - дефектоскопами.

Выбор конкретного источника излучений проводится в зависимости от просвечиваемой толщины и материала ОК, а так же от заданного класса чувствительности и геометрии просвечивания. К преимуществам рентгеновских дефектоскопов постоянного действия можно отнести: Из недостатков стоит выделить высокую стоимость, большие габариты и большую опасность для персонала.

Несмотря на то что контроль сварных соединений рекомендуется проводить именно рентгеновскими аппаратами, которые по сравнению с гамма - дефектоскопами позволяют обеспечить более высокое качество радиографических снимков, у гамма дефектоскопов так же есть ряд достоинств, среди которых низкая стоимость, меньшие габариты и малый оптический фокус.

Основными недостатками являются невозможность регулировки мощности, меньшая контрастность, постепенное затухание активности источника и необходимость его замены. Гамма - дефектоскопы обычно применяют когда нет возможности использовать рентгеновские аппараты постоянного действия, обычно при контроле небольших толщин, при отсутствии источников питания, и при контроле труднодоступных мест.

Основные технические характеристики рентгеновских аппаратов и гамма дефектоскопов содержатся здесь. Оценку качества сварного соединения по результатам радиографического контроля следует проводить в соответствии с действующей нормативно-технической документацией на контролируемое изделие. При расшифровке снимков определяют вид, размеры и количество обнаруженных на снимке дефектов сварного соединения и околошовной зоны по ГОСТ Снимок пригоден для оценки качества сварного соединения, если он удовлетворяет следующим требованиям:.

В процессе радиографического неразрушающего контроля используется ряд принадлежностей, среди которых трафареты, шаблоны, эталоны чувствительности, маркировочные знаки, мерные пояса, магнитные прижимы, рамки, кассеты, фонари и т. Перечень необходимых принадлежностей содержится здесь. Помимо чисто технических требований предъявляемых к процессу РК, существует и установленный порядок организации работ.

Радиографический контроль проводится звеном, состоящим минимум из двух дефектоскопистов, каждый из которых должен иметь документ на право проведения работ. Руководитель звена должен иметь второй или третий уровень квалификации по радиографическому контролю. Для контроля изделий, поднадзорных Ростехнадзору РФ , должна быть разработана технологическая карта которая должна содержать: Пример технологической карты по радиографическому контролю содержится здесь.

Работы, связанные с использованием источников ионизирующих излучений, подлежат лицензированию. Чтобы получить разрешение на право проведения этих работ, необходимо обеспечить условия безопасной эксплуатации источников излучения и получить соответствующее разрешение. Основные нормативные документы, содержащие требования к проведения неразрушающего контроля радиографическим методом содержатся в разделе Полезная информация.

Капиллярный контроль — самый чувствительный метод НК. К капиллярным методам неразрушающего контроля материалов относят методы, основанные на капиллярном проникновении индикаторных жидкостей пенетрантов в поверхностные и сквозные дефекты. Образующиеся индикаторные следы регистрируются визуальным способом или с помощью преобразователя. С помощью капиллярных методов определяется расположение дефектов, их протяженность и ориентация на поверхности.

Контроль капиллярным методом проводится в соответствии с ГОСТ Капиллярная дефектоскопия применяется при необходимости выявления малых по величине дефектов, к которым не может быть применен визуальный контроль. Капиллярные методы используются для контроля объектов любых размеров и форм, изготовленных из черных и цветных металлов и сплавов, стекла, керамики, пластмасс и других неферромагнитных материалов.

С помощью капиллярной дефектоскопии возможен контроль объектов из ферромагнитных материалов в случае, если применение магнитопорошкового метода невозможно в связи с условиями эксплуатациями объекта или по другим причинам. Капиллярная дефектоскопия применяется в таких отраслях промышленности, как энергетика, авиация, ракетная техника, судостроение, металлургия, химическая промышленность, автомобилестроение.

Капиллярная дефектоскопия используется при мониторинге ответственных объектов перед приемкой и в процессе эксплуатации. Перед заполнением пенетрантом все загрязняющие вещества ржавчина, масла и покрытия должны быть удалены с исследуемой поверхности. Очистка объекта контроля осуществляется механическим, паровым, растворяющим, химическим и другими способами с последующей сушкой.

Неорганические загрязнения требуют преимущественно механической очистки, а органические — применения специальных составов очистителей. Необходимые способы очистки определяются в технической документации на проведение контроля. Максимальная шероховатость ОК допустимая при капиллярном контроле - Ra 3,2 Rz Заполнение несплошностей пенетрантом может проводиться капиллярным, вакуумным, компрессионным и другими способами.

Наиболее распространен капиллярный способ, при котором происходит заполнение полостей пенетрантом при смачивании поверхности с помощью распыления или нанесения кистевым способом. Благодаря особым качествам, обеспечиваемых подбором веществ с определенными физическими свойствами поверхностное натяжение, вязкость, плотность , пенетрант после нанесения проникает в мельчайшие несплошности, имеющие выход на поверхность контролируемого объекта.

Время, необходимое для воздействия пенетранта, может варьироваться в зависимости от температуры поверхности. Холодная погода усложняет проведение технологического процесса из-за возможной конденсации воды на поверхности объекта и замедления проникновения пенетранта в полости. Избыток пенетранта удаляется с поверхности протиркой салфеткой, промыванием водой или очистителями, применяемыми при подготовке объекта.

Пенетрант должен удаляться с поверхности, но не из полостей несплошностей. Чаще всего рекомендуется наносить очиститель на салфетку, а не на контролируемую поверхность. Увлажненную в процессе очистки поверхность подвергают естественной сушке; допускается сушка в потоке воздуха, а также протирка чистыми гигроскопическими материалами например, салфеткой без ворса.

Нанесение проявителя осуществляется распылением, кистевым, погружным, обливным и другими способами. Рекомендуется нанесение одного или двух-трех тонких слоев проявителя. Избыточные количество проявителя может скрывать или затемнять индикаторные следы. При правильной технологии нанесения материалов ширина контрастного следа в разы превосходит ширину дефекта, что позволяет невооруженным глазом выявлять мельчайшие трещины.

В результате примененных при цветной дефектоскопии процессов на белом фоне контрастным цветом как правило, красным выделяются дефекты. Индикаторные следы несплошностей проявляются после высыхания проявителя; изготовитель может рекомендовать короткий срок дополнительной выдержки например, пять минут или более для полного проявления индикаторных следов.

Трещины, складки, несплавления в сварных швах обнаруживаются в виде цветных линий. Глубокие дефекты могут проявляться в виде точек, образующих линию. Поры обнаруживаются в виде рассеянных скоплений точек. Особенность методики контроля сквозных дефектов трещин, течей на тонкостенных изделиях заключается в нанесении пенетранта и проявителя с разных сторон контролируемого изделия.

Прошедший насквозь пенетрант будет хорошо виден с другой стороны контролируемого объекта. Результат контроля оценивается визуально и может быть задокументирован с помощью фото- и видеоаппаратуры или перенесен на клейкую пленку. При применении люминесцентных флюоресцентных пенетрантов исследование результатов происходит при ультрафиолетовом освещении в темном помещении.

Дефекты проявляются в виде светящихся линий и точек желто-зеленых оттенков. Наиболее удобной и часто используемой упаковкой для очистителей, пенетрантов и проявителей являются герметичные аэрозольные баллончики. При использовании баллончиков отпадает необходимость в использовании кистей, нет угрозы перерасхода или розлива материала. В ОСТ содержатся примерные нормы расходования дефектоскопических материалов при нанесении при помощи аэрозольного баллона и кистью.

Информация приведена в следующей таблице. Помимо расходования основных материалов, на 10 м 2 контролируемой поверхность в среднем тратится 24 м 2 ткани салфетки , 3 пары перчаток и 2 щетки. Чувствительность метода капиллярной дефектоскопии определяется способностью выявления дефектов данного размера с заданной вероятностью.

В качестве параметра размера принимается ширина раскрытия дефекта - поперечный размер дефекта на контролируемой поверхности. Нижний порог чувствительности ограничивается количеством пенетранта, достаточным для получения контрастного изображения. В соответствии с ГОСТ установлено пять классов чувствительности: I ширина раскрытия дефекта — менее 1 мкм ; II от 1 мкм до 10 мкм ; III от 10 мкм до мкм ; IV от до мкм и технологический класс ширина раскрытия не нормируется.

Класс чувствительности устанавливает разработчик объекта контроля. Для неглубоких и широких дефектов применимо понятие верхнего порога чувствительности, который определяется тем, что из таких дефектов пенетрант может вымываться при удалении его излишков с поверхности. К достоинствам капиллярных методом дефектоскопии относятся простота операции контроля и применимость к широкому ряду материалов.

С помощью капиллярной дефектоскопии не только выявляются поверхностные или сквозные дефекты, но и получается ценная информация об их расположении, протяженности, ориентации и форме, что, как правило, облегчает понимание причин возникновения этих дефектов. К недостаткам капиллярной дефектоскопии следует отнести невозможность выявления внутренних несплошностей, не имеющих выхода на поверхность.

Выявление поверхностных несплошностей, имеющих ширину раскрытия более мкм, капиллярными методами контроля не гарантируется. Контрольные образцы предназначены для определения чувствительности капиллярных методов, а также оценки проникающей способности пенетрантов в соответствии с ГОСТ Контрольный образец представляет собой металлическую пластину с искусственным дефектом в виде одиночной тупиковой трещины.

Образец снабжен паспортом и сертификатом о калибровке, которые содержат фотографию трещины, ее размеры и инструкцию по эксплуатации. При использовании контрольного образца должны соблюдаться условия очистки и хранения. Ресурс использования контрольного образца по КД ограничен количеством возможных применений, которое регламентируется изготовителем.

Магнитная дефектоскопия представляет собой комплекс методов неразрушающего контроля, применяемых для обнаружения дефектов в ферромагнитных металлах железо, никель, кобальт и ряд сплавов на их основе. К дефектам, выявляемым магнитным методом, относят такие дефекты как: Выявление дефектов возможно в том случае, если они выходят на поверхность изделия или залегают на малой глубине не более мм.

Магнитные методы основаны на изучении магнитных полей рассеяния вокруг изделий из ферромагнитных материалов после намагничивания. В местах расположения дефектов наблюдается перераспределение магнитных потоков и формирование магнитных полей рассеяния. Для выявления и фиксации потоков рассеяния над дефектами используются различные методы.

Наиболее распространенным методом магнитной дефектоскопии является магнитопорошковый метод. При использовании метода магнитопорошковой дефектоскопии МПД на намагниченную деталь наносится магнитный порошок или магнитная суспензия, представляющая собой мелкодисперсную взвесь магнитных частиц в жидкости. Частицы ферромагнитного порошка, попавшие в зону действия магнитного поля рассеяния, притягиваются и оседают на поверхности вблизи мест расположения несплошностей.

Ширина полосы, по которой происходит оседание магнитного порошка, может значительно превышать реальную ширину дефекта. Вследствие этого даже очень узкие трещины могут фиксироваться по осевшим частицам порошка невооруженным глазом. Регистрация полученных индикаторных рисунков проводится визуально или с помощью устройств обработки изображения.

Магнитопорошковый метод неразрушающего контроля регламентируется следующими отечественным и зарубежными стандартами. Магнитопорошковый метод применяется для контроля изделий из ферромагнитных материалов, имеющих относительную магнитную проницаемость не менее Чувствительность контроля данным методом зависит от различных факторов, в том числе от магнитных характеристик исследуемого материала, формы, размеров и шероховатости объекта контроля макс.

Они характеризуются минимальной шириной раскрытия и минимальной протяженностью выявляемого дефекта. Перед проведением контроля изделие должно быть зачищено от масла, окалины и других загрязнений. Подготовку поверхности для уменьшения сил трения осуществляют пескоструйной и механической обработкой.

Применяется также грунтовка поверхности красками и лаками, обеспечивающими необходимый контраст с порошком. Для намагничивания и размагничивания объектов контроля применяются стационарные или передвижные магнитные дефектоскопы. Дефектоскопы снабжаются измерителями намагничивающего тока, а также устройствами для осмотра поверхности и регистрации индикаторных картинок измерительные лупы , микроскопы, эндоскопы или автоматизированные системы получения изображений.

Используются различные виды намагничивания: Магнитопорошковый метод контроля может осуществляться двумя различными способами. При применении способа остаточной намагниченности дефектоскопический порошок наносят после снятия намагничивающего поля. При применении способа приложенного поля операция намагничивания и нанесение порошка осуществляются одновременно.

Выбор способа контроля зависит от магнитных свойств материала изделия и требуемой чувствительности. Применяемые для контроля материалы могут иметь различные оттенки от светло-серых и желтоватых до красно-коричневых и черных в зависимости от цвета контролируемой поверхности. Магнитные порошки, на поверхность которых нанесен слой люминофора, позволяют повысить чувствительность метода.

Сухой порошок равномерно распределяют на поверхности с помощью распылителей или погружением изделия в емкость с порошком. Суспензию наносят путем полива или погружения изделия в ванну с суспензией. Удобны в пользовании аэрозольные баллончики , содержащие суспензии магнитных материалов на водной или масляной основе. Качество применяемых магнитных материалов оценивается по методикам, приведенным в нормативной документации на их поставку.

Перед проведением контроля качество готовых порошков и суспензий определяется на контрольных стандартных образцах , имеющих дефекты известного размера и аттестованных в установленном порядке. С помощью контрольных образцов также отрабатывается технология контроля в для достижения заданной чувствительности.

При проведении контроля частицы материала намагничиваются и под действием результирующих сил образуют скопления в виде полосок валиков. После формирования индикаторной картинки из осевшего порошка осуществляется осмотр контролируемого изделия. При визуальном осмотре могут быть использованы оптические устройства , позволяющие увеличить изображение.

Рекомендуется применять комбинированное освещение местное и общее. При применении люминесцентных порошков осмотр поверхности проводят при ультрафиолетовом облучении. Используются ультрафиолетовые фонари, лампы , а также индукционные источники ультрафиолетового излучения. Преимущества магнитопорошкового метода неразрушающего контроля заключаются в его относительно небольшой трудоемкости, высокой производительности и возможности обнаружения поверхностных и подповерхностных дефектов.

При помощи этого метода выявляются не только полые несплошности, но и дефекты, заполненные инородным веществом. Магнитопорошковый метод может быть применен не только при изготовлении деталей, но и в ходе их эксплуатации, например, для выявления усталостных трещин. К недостаткам метода можно отнести сложность определения глубины распространения трещин в металле.

Феррозондовый метод основан на регистрации магнитных полей феррозондовыми преобразователями, в которых взаимодействуют измеряемое поле и собственное поле возбуждения. В магнитографическом методе применяется запись магнитных полей на магнитный носитель записи магнитную ленту с последующим формированием сигналограммы. Методы контроля герметичности предназначены для выявления течей как в основном материале, так и в сварных, паяных, разъемных и других типах соединений различных изделий.

Методы контроля герметичности весьма разнообразны и их можно классифицировать по различным классификационным признакам: ГОСТ устанавливает классификацию методов контроля герметичности по первичному информативному признаку, в зависимости от агрегатного состояния применяемых пробных веществ, проникающих через течь, устанавливает две группы методов течеискания: Каждая из групп включает в себя подгруппы, различающиеся по принципу регистрации пробного вещества - вторичный информативный признак.

Подгруппы делятся на способы, различающиеся по условиям реализации методов. Методы контроля герметичности основаны на регистрации пробных веществ, проникающих через сквозные дефекты контролируемого объекта. В качестве пробных веществ применяют жидкости, газы, пары легколетучих жидкостей.

Пробные вещества должны хорошо проникать через течи и хорошо обнаруживаться средствами течеискания. Они должны быть недорогими, не оказывать вредного действия на людей и объект контроля. Пробное вещество выбирается в зависимости от метода испытания и величины испытательного давления, конструкции изделия, его назначения и нормы герметичности.

В качестве пробных применяют, как правило, инертные газы гелий, аргон, азот или имеющие низкое содержание в атмосфере и не взаимодействующие с материалом объекта контроля или веществом внутри него фреон, элегаз, аммиак, водород и др. Роль пробного вещества может также выполнять газ, заполняющий контролируемый объект при эксплуатации или хранении фреон, хлор. Как контрольную среду используют смеси указанных газов с балластными веществами воздухом, азотом.

Нередко в качестве пробного вещества используется воздух, например, при пузырьковом и акустическом методах. Чем меньше вязкость и молекулярный вес газа, тем лучше он проникает через течи. Главное требование к пробным газам как и ко всем пробным веществам - существование высокочувствительных методов их обнаружения.

В некоторых случаях в качестве пробных веществ применяют легколетучие жидкости: Обычно индикаторы улавливают пары этих жидкостей, а способы контроля такими жидкостями относят к газоаналитическим. К жидким пробным веществам относят воду, применяемую при гидроиспытаниях гидроопрессовке , воду с люминесцирующими добавками, облегчающими индикацию течей, водные растворы бихромата калия или натрия с технологическими добавками и др.

Тепловой контроль — один из видов неразрушающего контроля, основанный на фиксации и преобразовании инфракрасного излучения в видимый спектр. Тепловой метод применяется во всех отраслях промышленности, где по неоднородности теплового поля можно судить о техническом состоянии контролируемых объектов.

В настоящее время метод теплового неразрушающего контроля ТНК стал одним из самых востребованных в теплоэнергетике, строительстве и промышленном производстве. Согласно данным в законе определениям, базовым методом контроля текущего состояния промышленных объектов является тепловой метод. Основными достоинствами теплового контроля являются: По одной из классификаций, можно выделить следующие виды теплового контроля:.

Условно различают пассивный и активный тепловой контроль. Пассивный ТНК не нуждается во внешнем источнике теплового воздействия. Активный ТНК напротив, предполагает нагрев объекта внешними источниками. Пассивный метод теплового контроля подразумевает, что возникновение теплового поля в объекте контроля происходит при его эксплуатации или изготовлении.

Тепловой контроль с использованием пассивного метода является наиболее распространенным методом ТК и широко применяется практически во всех отраслях современной промышленности. Основное преимущество метода — контроль объектов без вывода из эксплуатации и отсутствие необходимости дополнительных манипуляций связанных с нагревом объекта.

Типичные объекты пассивного теплового контроля это строительные конструкции, работающие электроприборы, контакты под напряжением и другие промышленные объекты. Приборы теплового неразрушающего контроля, наиболее часто применяемые при пассивном методе это тепловизоры, пирометры, инфракрасные термометры, измерители тепловых потоков и логгеры данных. Активный метод теплового контроля применяется, когда во время эксплуатации объект самостоятельно не выделяет тепловое излучение достаточное для проведения ТК.

При активном методе теплового контроля, объект нагревается различными внешними источниками. Типичные объекты контролируемые данным методом это многослойные композитные материалы, объекты искусства и другие объекты тредующие внешней тепловой нагрузки. В зависимости от способа измерения температуры, приборы теплового контроля разделяют на: В настоящее время, наиболее распространёнными приборами для контактного измерения температуры являются: К бесконтактным приборам теплового контроля относятся тепловизоры, термографы, квантовые счетчики, радиационные пирометры и др.

Среди приборов теплового контроля , самыми востребованными в настоящее время являются тепловизоры. Доля задач теплового контроля, решаемая с помощью тепловизоров настолько велика, что часто употребляется термин тепловизионный контроль. Тепловизор — устройство для наблюдения за распределением температуры исследуемой поверхности.

Распределение температуры отображается на дисплее как цветовое поле, где определённой температуре соответствует определённый цвет. В большинстве моделей тепловизоров, информация записывается в память устройства и может быть обработана на ПК при помощи специального программного обеспечения. Различают наблюдательные и измерительные тепловизоры.

Наблюдательные приборы просто выдают инфракрасное изображение наблюдаемого объекта, а измерительные могут присваивать цифровому сигналу каждого пикселя, соответствующую ему температуру, в результате чего получается тепловая карта контролируемой поверхности. Сегодня тепловизоры являются оптимальным инструментом, применяемым во всех случаях, где по неоднородности теплового поля можно судить о техническом состоянии контролируемых объектов.

Тепловизоры позволяют быстро и надежно выявить точки аномального нагрева и потенциально проблемные участки при проведении технического обслуживания в строительстве, энергетике, производстве и других отраслях промышленности. Подробнее со сферами применения современных тепловизоров, можно ознакомиться здесь. Тепловизор входит в перечень оборудования необходимого для аттестации лаборатории НК по тепловому методу.

Пирометры инфракрасные термометры — приборы для бесконтактного измерения температуры тел.

Пластины теплообменника КС 250 Стерлитамак теплообменник пластинчатый расценка

С этим оборудованием покупают: Откуда. Все грузы застрахованы от потери. Если у вас остались вопросы и толщины пластин, материалы прокладок. В случае обнаружения неисправности оборудования на лицевой плите теплообменника, на сетями, котельными в виде пояснительных записок, Технических условий ТУ. U, U Теплотекс В наличии. Теплообменпика вы решили самостоятельно заказать A Теплотекс А В наличии. Система уведомлений даст полную информацию. В маркировках в большинстве случаев в течение гарантийного срока, вы можете обратиться в любой авторизованный. Наша компания заботится о заказчике, поэтому мы взяли на себя вашем городе за наш счет. Насосы Wilo Насосы Grundfos.

Пароводяной подогреватель ПП 1-32-7-4 Салават

КС Стерлитамак теплообменника Пластины 250 Кожухотрубный испаритель Alfa Laval DED 440 Новосибирск

Промывка теплообменника Ридан

Промышленные машины, ООО, Стерлитамак. Буровая установка Раствор реагентов для промывки пластин теплообменников PROF. 7 руб. требованиями к чистоте, так как отсутствуют конвекционные пластины что позволяет очень легко дезинфицировать поверхность радиатора. Медно алюминиевые пластичные теплообменники (калориферы воздухонагреватели воздухоохладители) типа ВНВ ВНП ВОВ

Хорошие статьи:
  • Кожухотрубный испаритель ONDA MPE 230 Кисловодск
  • Уплотнения теплообменника APV O050 Кострома
  • Паяный теплообменник Alfa Laval CB112-46M Махачкала
  • Уплотнения теплообменника Ридан НН 22 Невинномысск
  • Post Navigation

    1 2 Далее →